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It was proposed by T. L. Collins that phase (or energy) 

errors in the main ring of an injected booster pulse may be 

damped out by feedback to the phase of the RF in the cavities. 

However, the RF phase must be shifted from its normal value 

to the value with feedback only for the newly injected booster 

pulse (with phase errors) so as not to affect the previously 

injected pulses for which all errors have presumably already 

been damped out. Q. Kerns estimated that within a gap of, 

say, 10 RF cycles between the previously injected booster pulse 

and the newly injected pulse the maximum RF phase shift attain- 

able is only about 2'. The essential features to be investi- 

gated are (1) the damping rate under the 2' limitation and 

(2) the effect of n.onlinearity in phase oscillation. 

During injection the injected beam bunches are held in 

stationary RF buckets (4, = 0) in the main ring. The phase 

oscillation is given by the equations 

1 dE dn = eV sin 9 (1) 

or 
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2 
9. t Q2 sin C$I = 0, 
dn2 

i-i2 = eVA (2) 

where n is the revolution number, C/I is the RP phase at the 

time of passage of the particle through the cavity, E is the 

deviation of the particle energy, from the synchronous energy 

(8 BeV), V is the peak cavity voltage, and 

A 27fh 1 1 = 2 2 --'2 mc- YB ( Y2 Yt ) 

evaluated at the synchronous energy of 8 BeV. For the main 

ring h = (harmonic number) = 1113, yt = (transition y) = 19.6, 

V= 1.5 MV, and we have 

A= 0.00666 MeV-', G! = 0.100 rad/rev. 

The bucket boundaries are sine curves with the extensions 

4 = fr and E = 2.2; = 230.0 MeV. The bucket area is 

A = 16; = 240 MeV-rad. 

The feedback scheme is given by the equations 

(3) 

where a is the feedback factor which may be a function of 

n and < > denotes averaging over all particles in the bunch, 

Thus, <$I> is the phase of the centroid of the bunch and is 

the signal picked up by the phase sensor. The phase jump 

a d<+’ 
dn is to be limited to 52'. 



For small oscillations we can linearize Equ. (3) by re- 

placing the sine function by its argument. Furthermore, for 

the linear equations we can drop the averaging symbol and 

reinterpret $ and E as the variables for the centroid of the 

beam bunch. The second order linear equation for $, then, 

becomes 

(4) 

For constant a the damping factor is exp (-$ ) an and the 

number of turns to reduce the amplitude by e -l is 

2 n =- . e an2 

The optimum value of a is the critical damping value 

(5) 

(6) 

for which ne has its minimum value l/L?. ,For large phase 

errors, however, w the amount of feedback ac dn required for 

critical damping may easily exceed the hardware limit of 
0 

a=2. The feedback phase jump is, therefore, 

fMin(a$$,c) where the sign is that of $$. When the 
&k phase jump is clipped in this manner, the a dn term in 

Equ.(4) is replaced by +_a,giving 

2 
(7) 

which represents just a shift in the origin for $I. The 

!%! origin in the (Q,E) plane changes by 213 every time dn 
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changes sign. The effect of this is to initiate a new 

undamped oscillation with initial conditions E = 0 and 

141 = (4 - 2~1 about the new origin. Thus, the damping 

achieved is 4cl per phase oscillation. When the phase error 

has been reduced to less than 2a this scheme will lead to an 

overshoot, 9 By this time, however, ac dn is small and the 

clipping is not in effect, The final damping is that corres- 

ponding to critical damping. 

One might speculate that a more efficient scheme would 

be to start with a small feedback coefficient a and increase 

it in step with the decreasing amplitude of the phase oscil- 

lation so that the maximum phase jump is always fa. An 

approximate analysis of Equ. (4) with a = a(n) leads to the 

function 

a(n) = ao 
c 

1 - log (1 - n/ne) 1 (8) 

where n e is the e-folding revolution number given by Equ. (5) 

and 

(9) 

This approximately maintains the condition 

a "2 
( 1 

2, +a 'L 
max ’ 

where "max" implies,the maximum value occurring each half 

phase oscillation. For n 2 ne Equ. (8) is nonsense and a is 

increased linearly up to ac from a(n, - 1). The approximate 

damping factors for small n for the damping schemes considered 

are: 



(b) 

(cl 

w 
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for "constant feedback" a = const = a0 

p‘ Qn 

=k, 

damping factor = e-' @o 

for "critical feedback" a = const = ac = sz 2 and 

no phase jump limit, damping factor = e -fin 

for "clipped feedback*' a = Min 
i ac31* ' 1 

damping factor 2 e 2 L Qn 7~ $. 

for "logarithmic feedback" a = a0 [l - log(1 - +,I, 

LL- fin 
e 

damping factor = e $. 

The feedback programmed according to Equ. (8) seems to have 

a slight edge over the clipping scheme, but the damping rate 

decreases for large n in this scheme so that the two are ex- 

tremely close. Certainly simplicity favors the clipping 

scheme. 

The phase-space area occupied by the beam is estimated 

to be only about 13 MeV-rad which is small compared to the 

240 MeV-rad area of the bucket. Therefore as long as the 

initial amplitude of the phase error $. is much smaller 

than r the nonlinearity in the phase oscillation should not 

be too severe. The effects of the nonlinearity and of the 

various feedback schemes are studied by using a computer. 

Both the clipped feedback and the programmed feedback,given 

by Equ. (8) are examined, 

The equations programmed for the computer are the dif- 

ference equations (now we replace the averaging sign < >) 
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+ntl= +n - AEn 

E n+l = En t eV sin ,$ntl + a (<@n+12 - 
c 

<on') 
3 

(10) 

which correspond to Equations (3) and describe more closely 

the actual behavior of the particles in the main ring. Four 

hundred and forty particles distributed in a matched phase 

space area of 13 MeV-rad are tra.ced with their average phase 

(phase of centroid) <$nZ evaluated every turn. Their phase 

points are plotted in the (E,$) phase plane at specified 

number of turns after injection (n = 0). Figures l-5 show 

bunch shapes after 500 turns around the machine for initial 

phase errors <$I~> = loo, 2C", 3o", 4o",,500'. The ellipse 

represents the path takenby the centroid of the bunch in 

the absence ,of feedback, The clipped feedback program is 

used with a clipping level a = 2'. The trajectory of the 

bunch centroid with feedback is shown for the same cases in 

Figures 6-10.~ Figure 11 shows the bunch after 500 turns for 

the log feedback function Equ. (8), starting at <$I~> = 30'. 

The corresponding trajectory of the centroid is shown in 

Figure 12.* Nonlinearity is measured by the change in the 

second moment of the bunch in normalized coordinates. Table I 

compares results for <Qo> = 30°,with the four feedback condi- 

tions mentioned previously. Table II gives similar figures 

for <I$~> = loo, 2C", 30°, 40°, and 50' using the clipping 

scheme. The 'quantity nlOO is the number of turns for which 

.Ol in normalized coordinates. The quantity 

*Curve is marked every tenth turn. 



-7- TM-252 
0430 

a500/ao is the ratio of the second moment of the bunch on 

the 500th turn to that on the zeroth turn. 

It appears from these results that something like 30' 

phase error or 8 MeV energy error in the injection can be 

successfully corrected by feedback to the RF phase with the 

limit of 2' in phase jump. The damping time required is 

much less than the I sec. 15 
between booster pulses. For phase 

errors larger than 30' the nonlinearity begins to cause 

significant distortion in the bunch shape leading to dilution 

of the phase space density. Because the exponent of the 

damping factor is proportional to the phase jump limit a, 

a small increase in this quantity would lead to considerable 

relaxation in injection tolerances. 
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TABLE I 

Comparison of Feedback Schemes 

at <$o> = 30°, CEO> = 0, a = 2O 

Feedback type 

(a) a = a0 = $- 
0 

YOO 0500'oo 

s 1100 1.087 

(b) a = ac = $ ( no phase jump limit) 64 1.004 

Cc> a = Min ac, ld,+Tdnl) 248 1.032 

(d) a=ao 
C 

l-l?g(l-n/ne) 
1 

343 1.052 

TABLE II 

Clipped Feedback a = Min ac, 1 d$Tdn 1 Results 

Qao’ YOO a500'ao 

loo 92 1.002 

2o" 156 1.007 

3o" 248 1.032 

4o" 317 1.119 

50° 358 1.326 
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